打印本文 打印本文  关闭窗口 关闭窗口  
读懂AI:如何利用人工智能来改善人类健康?
作者:佚名  文章来源:生物谷  点击数  更新时间:2019-1-16 15:07:01  文章录入:huangyf81  责任编辑:huangyf81

【1】Com Biol Med:人工智能帮助治疗糖尿病引发的眼疾

doi:10.1016/j.compbiomed.2018.10.031

根据最近的一项研究,研究人员已经使用人工智能诊断早期阶段的糖尿病引发的失明症状。

糖尿病视网膜病变是成人视力丧失的主要原因,其影响正在全球范围内扩大,到2030年将有1.91亿人受到影响。在疾病早期,虽然没有明显症状,但疾病可能已经发展。早期诊断和治疗可以对患者保持多少视力产生显着影响。

研究人员开发了一种图像处理算法,可以自动检测疾病的一个关键症状,即视网膜上的液体,准确率为98%。该研究的首席研究员,墨尔本皇家理工大学Dinesh Kant Kumar教授表示,这种方法是即时且具有成本效益的。

【2】PLoS ONE:科学家有望利用人工智能技术更好地管理癌症患者

doi:10.1371/journal.pone.0208808

近日,一项刊登在国际杂志PLOS ONE上的研究报告中,来自萨里大学等机构的科学家们通过研究开发出了一种新型的人工智能系统(AI),其有望预测癌症患者在整个治疗过程中的疾病症状和严重程度。

文章中,研究人员详细描述了他们开发的两种机器学习模型如何准确预测癌症患者所面临的三种疾病症状的严重性,这三种症状包括抑郁、焦虑和睡眠障碍,这些症状均与癌症患者生活质量的明显下降直接相关。研究者分析了癌症患者在接受计算机断层扫描x射线治疗过程中所经历的症状和相关数据,随后在不同的时间段来检测是否机器学习算法能准确预测患者的疾病症状表现。

【3】Cancer Res:开发出可高效识别不同类型癌细胞的人工智能系统

doi:10.1158/0008-5472.CAN-18-0653

在癌症患者中,癌细胞的类型在不同患者之间存在很大差异,甚至在同一种疾病中也是如此;识别癌症患者机体中存在的特殊细胞类型对于选择最佳的疗法来有效治疗患者至关重要,但能够完成这项任务的方法却是非常费时的,而且常常会因人为错误和人类视野的局限性而被阻碍。

近日,一项刊登在国际杂志Cancer Research上的研究报告中,来自日本大阪大学的科学家们通过研究揭示了如何通过一种基于人工智能的系统来克服上述问题,研究者指出,这种基于人工智能的系统能通过扫描显微图像并获得比人类判断更高的准确率,来有效识别不同类型的癌细胞,这种方法或能给肿瘤学领域的研究带来革命性的突破。

【4】Bioinformatics:新型人工智能系统有望加速科学家们在癌症领域的研究

doi:10.1093/bioinformatics/bty845

近日,一项刊登在国际杂志Bioinformatics上的研究报告中,来自剑桥大学的科学家们通过研究开发了一种名为“LION LBD”的新型AI系统(人工智能系统),其能帮助帮助研究人员进行癌症相关的研究。

目前癌症研究在全球范围内吸引了大量的资金,而且相关研究报告的数量也非常庞大,因此研究人员正在奋力进行癌症领域相关的研究,而他们常常会发现,很多批判性假设的证据往往是在文章发表之后才会被发现。

癌症是一种非常复杂的疾病,其在全球是诱发人群死亡的第二大原因,目前研究人员并没有完全对癌症进行深入剖析;癌症的发生包括多种化学和生物化学分子、反应以及多种通路的改变,研究人员在多个广泛的学科中进行癌症研究,而其在描述相似概念的方式上也各不相同。

【5】Science:利用人工智能预测RNA病毒的动物宿主和传播媒介

doi:10.1126/science.aap9072

诸如埃博拉病毒和寨卡病毒之类的许多致命性的和新出现的病毒传播给人类并导致严重疾病之前早就在野生动物和昆虫群落中传播。从基因组序列中寻找不同病毒的动物和昆虫宿主可能需要多年的密集的实地研究和实验室工作。由此引起的延迟意味着难以实施预防措施,比如给疾病的动物来源接种疫苗,或者阻止物种之间的危险接触。因此,在当前,及时地找到这些天然病毒宿主---这可能有助于阻止向人类传播---对科学家们构成了巨大的挑战。

如今,在一项新的研究中,来自苏格兰格拉斯哥大学等研究机构的研究人员设计出一种新的机器学习算法,它利用病毒基因组序列预测一系列RNA病毒的可能的自然宿主,其中RNA病毒是最常见的从病毒跳跃到人类中的病毒群体。相关研究结果发表在2018年11月2日的Science期刊上。

 

[1] [2]  下一页

打印本文 打印本文  关闭窗口 关闭窗口