什么是荟萃分析(Meta-analysis)
总之,该荟萃分析结果显示,总体上健择/铂类联合与其它铂类方案比较,患者能获得轻微但有统计学意义的改善(总生存率和无疾病进展生存率),但无法就单独药物进行比较。结果同时显示,健择方案较传统方案更有效;与其他三代药物联合至少疗效相当。研究者最后还提醒各位,治疗决定的选择必须遵从疗效好坏,还要考虑到其他在这里没有进行讨论或研究的一些临床预后因素的作用。
3IPD 荟萃分析的步骤
首先要确定研究的主题,然后明确本方案的目的,试验的入选标准和排除标准,计划的分析指标,以及准备应用的统计学方法等。一篇荟萃分析最好只研究一个主要问题,但在研究的主要目的明确后,还可以同时研究其他的次要问题。
寻找和选择临床试验
理想情况下,所有与研究主题相关的文献都应该包括在荟萃分析之内,不管它是否已经发表。必须考虑到文章出版、语言和引用上的偏倚。一般情况下,显示有统计意义的试验更易被某些杂志刊登,这些论文的发表周期较短,他们有最高的点击指数。通常会用英语发表,他们比未显示出统计学意义的试验被更多的参考和引用。单单使用计算机进行检索是不够的,尽管这样比较方便。因为即便是象MEDLINE 或EMBASE 这样的大型数据库,其所收录的也都是在各类杂志上发表的文献,且分别是1966 年和1974 年以后的文献。还要通过人工检索一些会议资料,或直接同研究者和制药公司进行个人接触,来保证文献的全面性。
试验的质量
确保每一个试验的质量是很关键的,因为它会影响整个荟萃分析的质量。不充分的随机化,随机分组后将患者排除在外,治疗组之间不能平行的随访,以及对研究终点的主观评价都会使试验的结果发生偏差。因此各独立研究的质量是不同的。在进行荟萃分析时,各研究结果就不应该被平等的对待,而应根据各个独立研究质量的高低给予不同的处理。比如对单个随机对照临床试验的质量进行评分,将分值纳入荟萃分析的入选标准,或将其作为合并检验时的权重。
对试验进行描述
在对各试验结果进行荟萃分析前,每一个试验必须被记录和描述。包括对试验设计的评价,治疗组间进行比较的特性,患者人群特征,试验质量的评估和试验结果的定量总结等。这个过程使研究者可以发现相似的试验而将其合并,了解入组患者的类型和评价数据的可靠性。被排除在荟萃分析之外的试验,以及被排除的原因也应该进行描述。
分析
在荟萃分析中,齐性检验是重要的一环,目的是检查各个试验结果是否具有一致性。一般来讲,仅仅由于抽样误差造成的各试验间结果不同,不会影响荟萃分析结果的可靠性。但若发现不一致性的原因是某种特殊因素所致,如某个研究失访病例过多,则不应该将这个试验结果列入荟萃分析。常用的齐性检验方法主要有χ2 或Q 检验。
对数据结果进行汇总合并分析是荟萃分析的精华,目前应用于此的统计学方法较多。如随机效应模型,Cochrane 法,Glass 法和Fisher-Z 转换法等。在肿瘤生存或疗效研究领域,较多的是对生存率或死亡风险比(Hazard Ratio,HR)指标的分析。通常,要对每个入选试验的数据进行统计计算,得出主要的三个值:O=试验组所观察到的事件发生数;E=假设试验组和对照组事件发生的几率相同,预期试验组的事件发生数;Var(O-E)=(O-E)的方差,用来衡量试验中治疗差异估计的精确度。计算单个试验风险比的公式为:HR=Exp[(O-E)/Var(O-E)]。多个试验总风险比的计算为:HRc=Exp[Σ(O-E)/ ΣVar(O-E)]。风险比95%的可信区间可通过下列公式计算:上限=Exp[(O-E)/Var(O-E) +1.96/ Var(O-E)1/2];下限= Exp[(O-E)/Var(O-E)-1.96/ Var(O-E)11/2]。分析得出的数据最终可以用林图(Forest Plot)来直观显示。
两个治疗组间的绝对生存率或无病生存差异是疗效研究中的主要分析指标,通过采用一定的统计方法,同样可获得某一时点(如5 年)生存率合并估计值,以及该时点两组生存率差的合并估计值,具体的公式可参见有关的文献。